

Towards Eavesdropped Image Denoising

Florian LEMARCHAND † , Erwan NOGUES †‡ and Maxime PELCAT †

[†] Univ. Rennes, INSA Rennes, IETR - UMR CNRS 6164

[‡]DGA-MI, Bruz, France

Towards Eavesdropped Image Denoising

Florian Lemarchand

- Engineer INSA Rennes « Electronique et Informatique Industrielle (EII) », 2018
- PhD Student since October 2018:
 - Lab: "Institut D'Electronique et des Technologies du numéRique de Rennes" (<u>IETR</u>)
 - Team: "Video Analysis and Architecture Design for Embedded Resources " (VAADER)
 - PhD Founded by "Pole d'Excellence Cyber " (<u>PEC</u>) \rightarrow Bretagne council et French ministry of armed forces
 - Advisors : Erwan Nogues and <u>Maxime Pelcat</u>
 - PhD Subject:
 - "Recognition of Images and Intercepted Signal using Artificial Intelligence"
 - Technical Domains :
 - Image Restoration
 - Machine (Deep) Learning
- More information on my research on my <u>webpage</u>!
- Contact: florian.lemarchand@insa-rennes.fr
- What about you?
 - Background: Image Processing? Machine Learning?

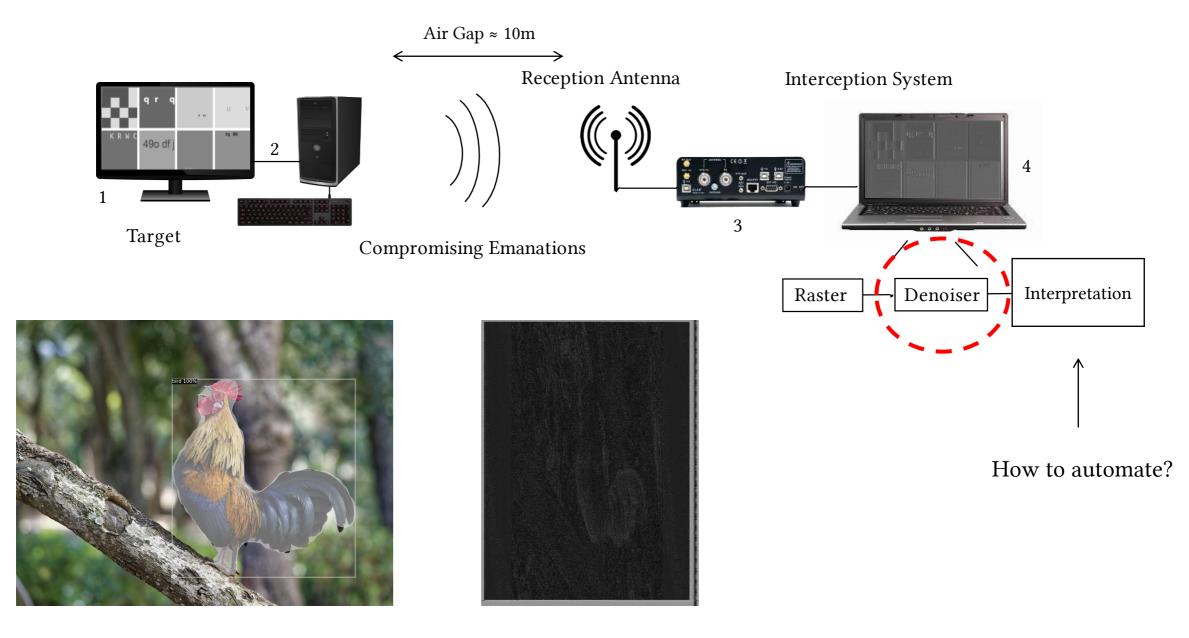
I . Context

II . Problem Definition

- Digital Image and Noise
- Noise Measure
- II . « Expert-Based » Denoising
 - Kernel-Based Filtering
 - Advanced Filtering
- III . « Learning-Based » Denoising
 - Deep Learning
 - Convolutional Neural Networks
 - CNN Architectures for Denoising
 - Towards Less Supervision
 - Prototyping Process
- IV . Eavedropped Image Denoising
 - Why is it complicated?
 - Existing Solutions
- V . Challenges and Perspectives
- VI . Practical Work Overview

I. Context

- Digital Image and Noise
- Noise Measure
- II . « Expert-Based » Denoising
 - Kernel-Based Filtering
 - Advanced Filtering
- III . « Learning-Based » Denoising
 - Deep Learning
 - Convolutional Neural Networks
 - CNN Architectures for Denoising
 - Towards Less Supervision
 - Prototyping Process
- IV . Eavedropped Image Denoising
 - Why is it complicated?
 - Existing Solutions
- V . Challenges and Perspectives
- VI . Practical Work Overview



I. Context

II . Problem Definition

- Digital Image and Noise
- Noise Measure
- II . « Expert-Based » Denoising
 - Kernel-Based Filtering
 - Advanced Filtering
- III . « Learning-Based » Denoising
 - Deep Learning
 - Convolutional Neural Networks
 - CNN Architectures for Denoising
 - Towards Less Supervision
 - Prototyping Process
- IV . Eavedropped Image Denoising
 - Why is it complicated?
 - Existing Solutions
- V . Challenges and Perspectives
- VI . Practical Work Overview

146 148 154 162 164 165 1

144 144 151 161 166 168 16

144 141 146 153 159 165 16

153 160 16

144 147 152 1

142 143 146 1

155 149 145 142 144 147 152 158 158 158 152 144 139 134 13 153 152 150 148 147 146 149 152 155 157 155 153 150 146 14

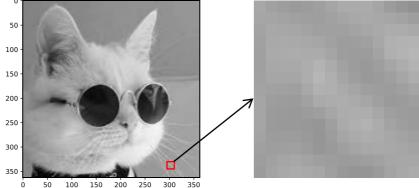
151 155 154 153 150 148 148 148 150 153 156 159 159 156 15

48 155 156 156 160 165 158 149

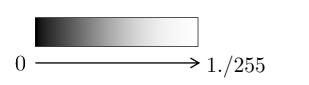
51 149 148 147 155 163 161 157

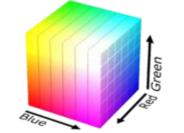
Digital Image

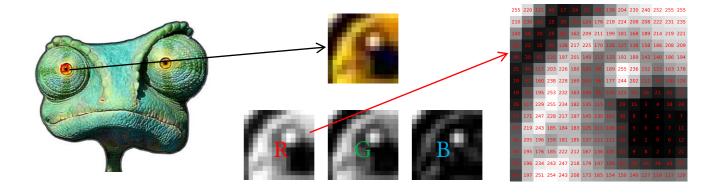
- Pixel (Picture Element) ٠ $\rightarrow p \in [0, 255]$ or [0., 1.]
- Image \rightarrow HxWxC array of pixels ٠
 - Height, Width, Channels •
 - C = 1 for grayscale, C=3 for RGB (Red Green Blue), C>100 for hyperspectral •
- Content:
 - Natural Images (pictures) •
 - Synthetic Images (computer screen, video games, cartoon, ...) .



2 145 144 143 149 157 159 52 143 142 141 144 147 153 159 160 160 154 147 144 143 14 .52 142 141 141 140 139 147 157 161 164 159 151 146 143 1 50 144 144 144 141 138 144 152 157 160 158 154 150 147 1 8 146 147 148 144 139 142 147 152 155 156 155 153 150 1 45 149 152 154 151 147 145 143 144 146 149 153 154 154 15 143 151 155 158 156 153 147 140 138 138 143 151 155 158 1



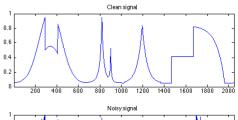


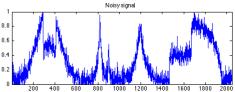


Problem Definition

Image Noise

- Noise ≠ Signal
 - Signal is the information contained in an image
 - Noise is the undesired variation that disrupts the interpretation
- Noise Sources
 - Defects of sensing and transmission systems
 - Image sensors: Defects of hardware surfaces / Analogic to Digital conversion errors
 - Signal Loss (electro-magnetic interception)
 - Sensing content itself: when only few photons (space imaging)
 - Lossy Compression/Decompression (JPEG)
 - Poor acquisition conditions (light, rain, blur)
 - Falsification (incoherence in Bayer patterns)
- Noise Types:
 - Pixelwise
 - Spatially Correlated
 - Data Dependent





No Noise

Gaussian

• Speckle

Uniform

• Bernoulli

Poisson

Ø

 $\mathcal{N}(\sigma_g)$

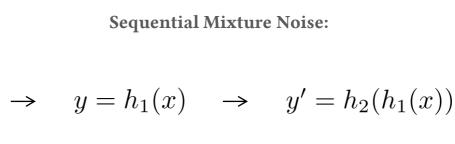
 $\mathcal{S}(\sigma_s)$

 $\mathcal{U}(s)$

 \mathcal{P}

•

Noise Models



Gaussian and Bernoulli

• Bernoulli and Speckle

 \rightarrow

x

 $\mathcal{N}(\sigma_g)$

 $\mathcal{S}(\sigma_s)$

 \rightarrow

Towards Eavesdropped Image Denoising

Primary Noise:

 p_o

 $p_n = p_o + \mathcal{N}(\sigma_q)$

 $p_n = p_o + \mathcal{N}(\sigma_q) \times p_o$

 $p_n = p_o + \mathcal{U}(s)$

 $\mathcal{B}(p) \quad p_n = \begin{cases} \text{choice}(\min, \max), \text{if rand}() \in [0, p[\\ p_n, \text{otherwise} \end{cases}$

 $p_n = p_o + \mathcal{P}(p_o)$

How to measure how noisy is an image?

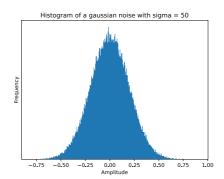
- Subjective/Qualitative rating
 - N subjects ask to rate image quality (A=x, B=y) or compare two versions (A > B)
 - Mean Opinion Score (MOS)
- Objective Metrics
 - Mean Squared Error (MSE) / Root MSE (RMSE) / Sum of Absolute Errors (SAE)

$$MSE(x,y) = \frac{1}{mn} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} (y(i,j) - x(i,j))^2$$

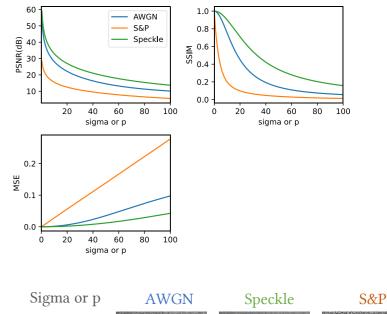
• Peak Noise to Signal Ratio (PSNR)

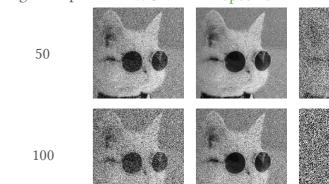
$$PSNR(x,y) = 10.log_{10}\left(\frac{MAX^2}{MSE}\right)$$

- Structural SIMilarity (SSIM) [Wang04] → measure spatial coherence
- Learned metrics:
 - Predict subjective rating using a Neural network [Talebi18]
- Histogram of pixel values



[Wang04] Wang, Zhou, et al. "Image quality assessment: from error visibility to structural similarity." IEEE transactions on image processing 13.4 (2004): 600-612. [Talebi18] Talebi, Hossein, and Peyman Milanfar. "NIMA: Neural image assessment." IEEE Transactions on Image Processing 27.8 (2018): 3998-4011.





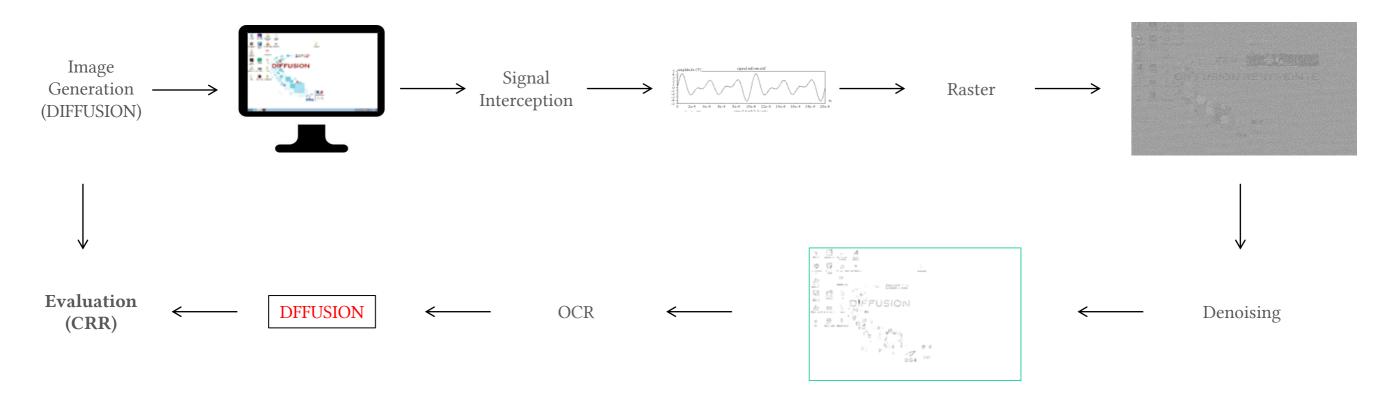
Reference

Towards Eavesdropped Image Denoising

10

Problem Definition

- When usual metrics do not make sense: SSIM, PSNR, ...
 - Use of application specific metrics, e.g.: character recognition a.k.a. Optical Caracter Recognition(OCR) [Lemarchand20]



[Lemarchand20] F. Lemarchand, C. Marlin, F. Montreuil, E. Nogues, et M. Pelcat, « Electro-Magnetic Side-Channel Attack Through Learned Denoising and Classification », in ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, May 2020, p. 2882-2886, doi: 10.1109/ICASSP40776.2020.9053913.

I. Context

II . Problem Definition

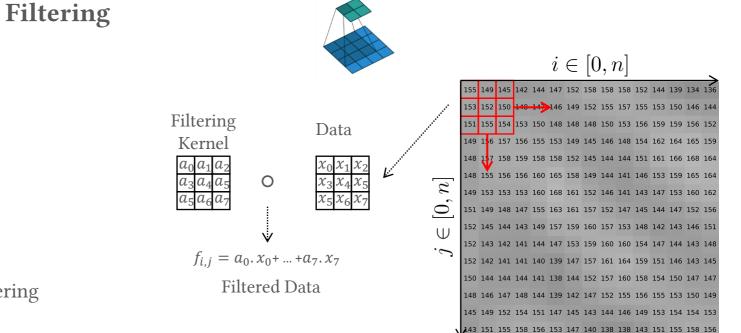
- Digital Image and Noise
- Noise Measure

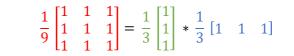
II . « Expert-Based » Denoising

- Kernel-Based Filtering
- Advanced Filtering

III . « Learning-Based » Denoising

- Deep Learning
- Convolutional Neural Networks
- CNN Architectures for Denoising
- Towards Less Supervision
- Prototyping Process
- IV . Eavedropped Image Denoising
 - Why is it complicated?
 - Existing Solutions
- V . Challenges and Perspectives
- VI . Practical Work Overview





->

→ →

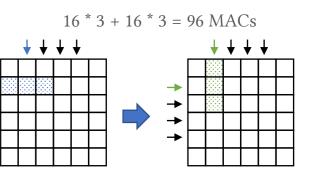
→

16 * 9 = 144 MACs

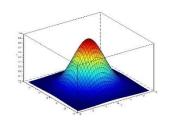
 \downarrow \downarrow \downarrow \downarrow \downarrow

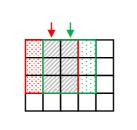
->

→ →



- Common kernels:
 - mean: $a_k = \frac{1}{kernel_size}$
 - median / min / max: $out = operator(x_0, ..., x_k)$
 - Gaussian / approximate Gaussian
- Difficulties:
 - Padding: Add values around the image to enable kernel filtering
 - Computation optimizations:
 - Kernel Separability: Horizontal and Vertical slides computed separately
 - Previous results re-use
- Issue: Does not adapt to content

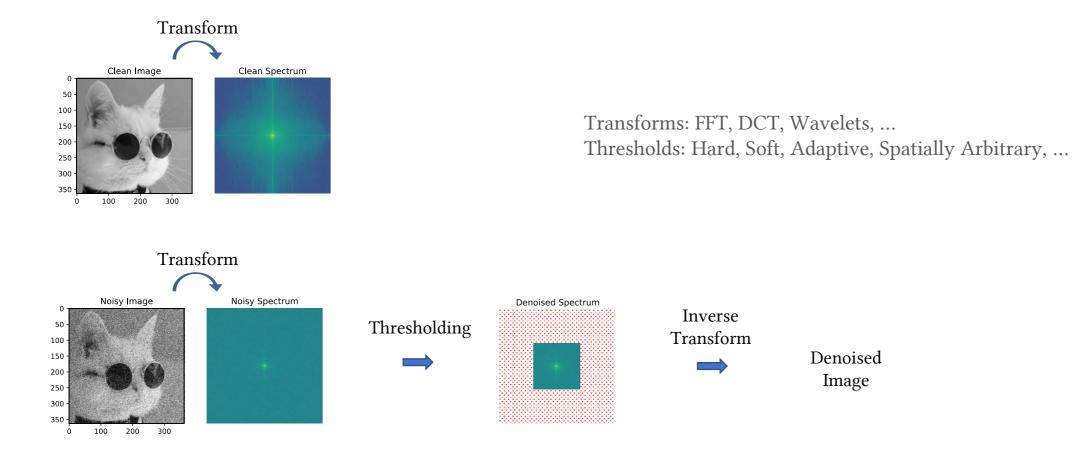




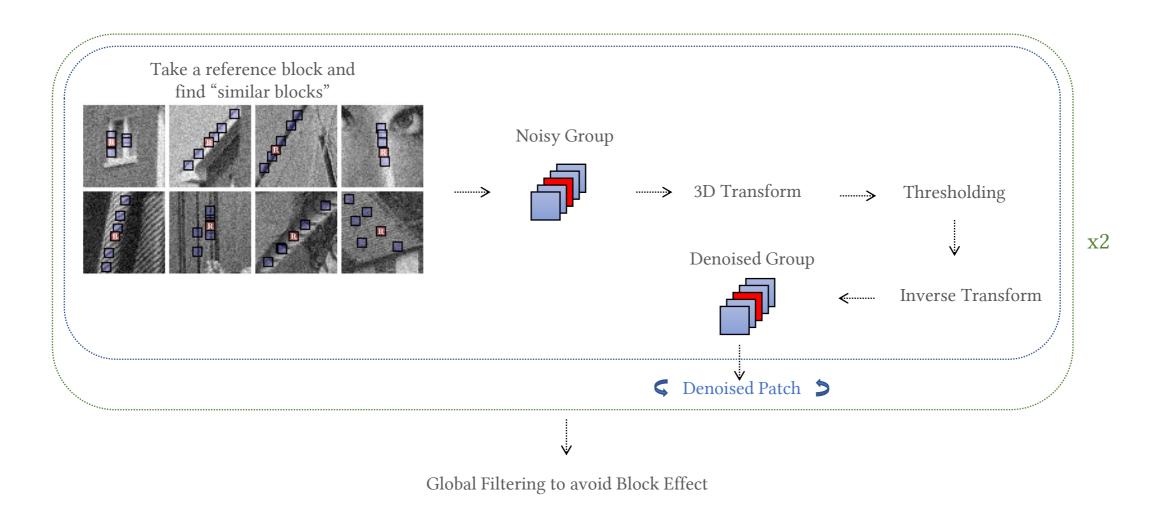
13

Thresholding in the transform domain

• Transform the image in a sparse representation that concentrate the signal, small coefficients are considered as noise and threshold



BM3D: Block Matching 3D



[Dabov07] K. Dabov, A. Foi, V. Katkovnik, et K. Egiazarian, « Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering », IEEE Trans. on Image Process., vol. 16, nº 8, p. 2080-2095, août 2007, doi: 10.1109/TIP.2007.901238.

I. Context

II . Problem Definition

- Digital Image and Noise
- Noise Measure

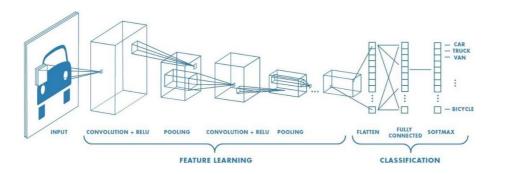
II . « Expert-Based » Denoising

- Kernel-Based Filtering
- Advanced Filtering

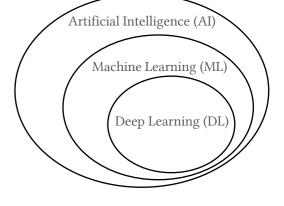
III . « Learning-Based » Denoising

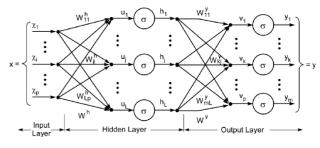
- Deep Learning
- Convolutional Neural Networks
- CNN Architectures for Denoising
- Towards Less Supervision
- Prototyping Process
- IV . Eavedropped Image Denoising
 - Why is it complicated?
 - Existing Solutions
- V . Challenges and Perspectives
- VI . Practical Work Overview

- AI \rightarrow " The effort to automate tasks normally performed by humans"
- ML \rightarrow The "program" defines itself the rules to solve a problem from data (examples)
- DL \rightarrow ML that uses successive representations (layers), mostly abstract, to solve a problem
 - The number of representation layers is called depth
- Types of Deep Neural Networks:
 - Multi-Layer Perceptrons
 - All "neurons" are connected to each other and connections represented by learnable values (weights). The neuron itself is a non-linear activation function,
 - Convolutional Neural Networks [LeCun98]
 - The network is made of groups of filters (layers) convolved to the input or previous layer results resulting in feature maps,
 - The filters are learnable and outputs of layers are passed through activation function
 - First Success: Classification

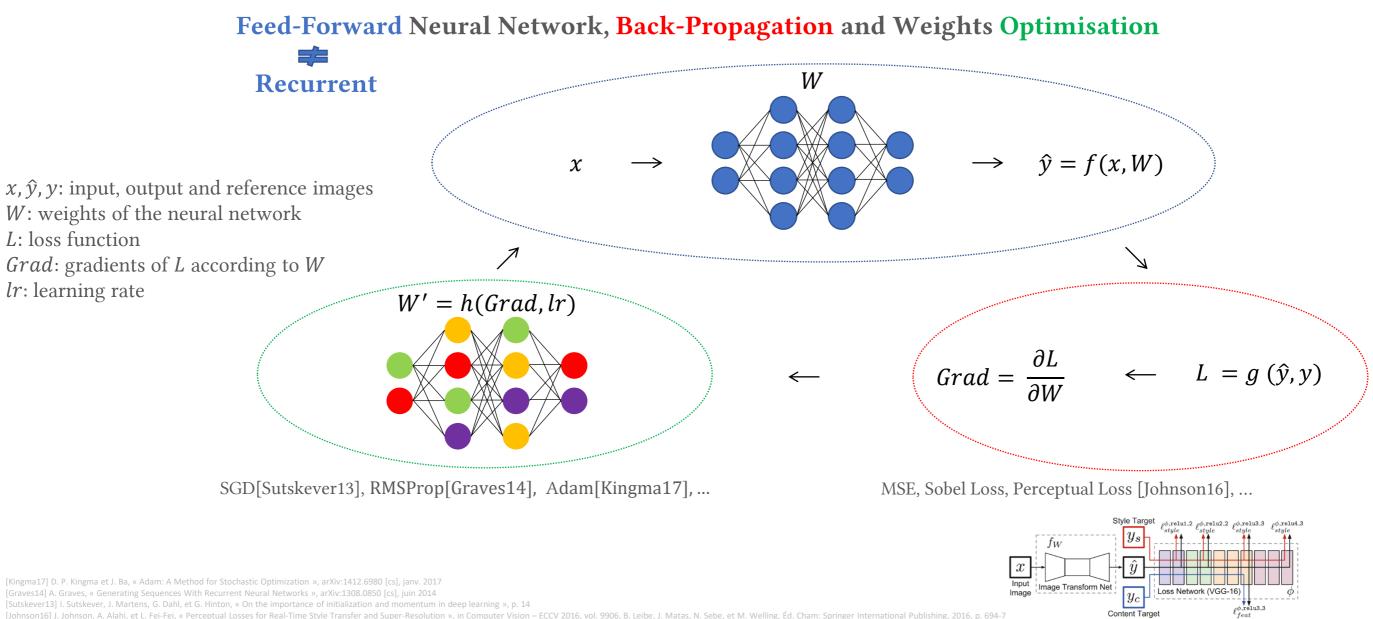


[LeCun98] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et others, « Gradient-based learning applied to document recognition », Proceedings of the IEEE, vol. 86, nº 11, p. 2278–2324, 1998





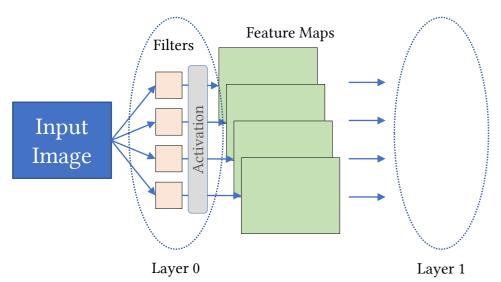
17

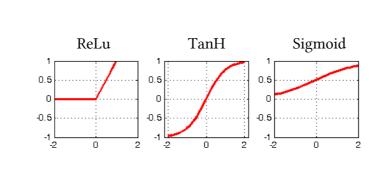


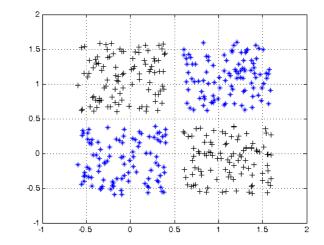
[Johnson16] J. Johnson, A. Alahi, et L. Fei-Fei, « Perceptual Losses for Real-Time Style Transfer and Super-Resolution », in Computer Vision – ECCV 2016, vol. 9906, B. Leibe, J. Matas, N. Sebe, et M. Welling, Éd. Cham: Springer International Publishing, 2016, p. 694-7

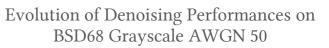
Content Target

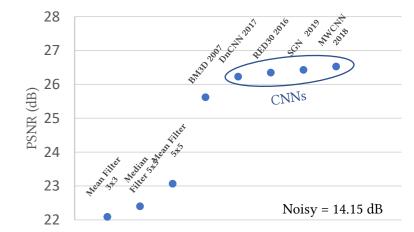
- Why convolutions?
 - Scientists used to filter with kernel!
 - Using filters requires less parameters than fully connecting layers
- Why activations?
 - An activation is a non-linear function. Non-Linearity is required for complex modelling
 - Without activations, all layers would collapse in one, being a linear combination of them,
 - It enables layers to be learned independently from others.
- For Denoising, three groups: GANs, Autoencoders, Others
- [Jain09] \rightarrow First to use image to image network instead of image to class







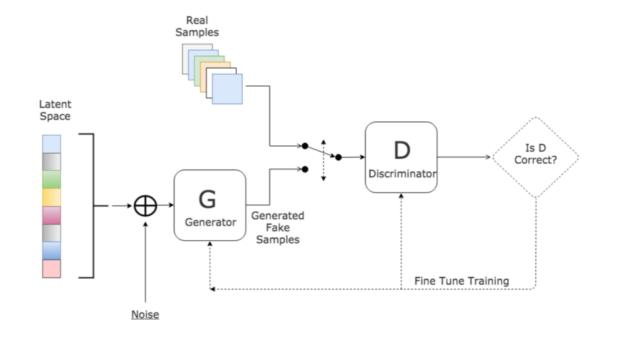


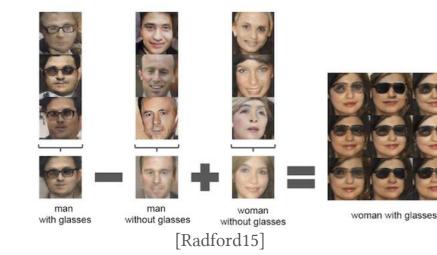


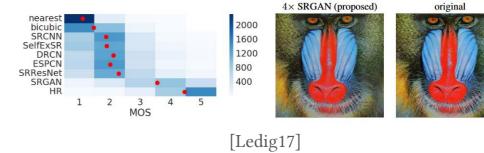
[Jain09] V. Jain et S. Seung, « Natural image denoising with convolutional networks », in Advances in neural information processing systems, 2009, p. 769–776.

Towards Eavesdropped Image Denoising

- Generative Adversarial Networks [Goodfellow14]
 - Principle
 - Two networks: a Generator G and a Discriminator D
 - G tries to generate an image close enough to real samples
 - D tries to determine if G samples are real of fake
 - G and D trained to fool each other
 - Interest?
 - Generate new samples from a distribution
 - Input an image instead of a noise vector to make G denoise







More Applications!

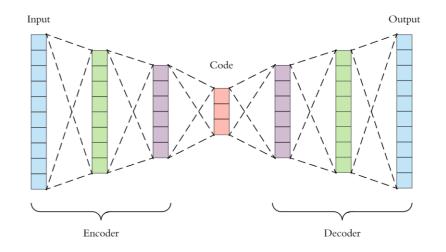
[Goodfellow14] Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.

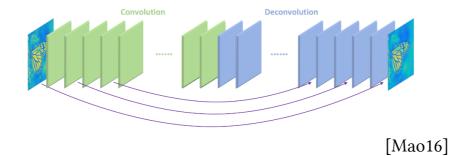
[Radford15] Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015).

[Karras17] T. Karras, T. Aila, S. Laine, et J. Lehtinen, « Progressive growing of gans for improved quality, stability, and variation », arXiv preprint arXiv:1710.10196, 2017

[Ledig17] C. Ledig et al., « Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network », in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, juill. 2017, p. 105-114, doi: 10.1109/CVPR.2017.19.

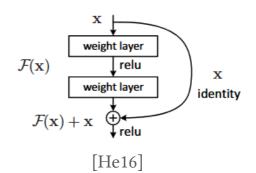
- Autoencoders [Vincent10]
 - Principle
 - Bottleneck network that learns dimension reduction without supervision
 - Input is corrupted (noise, sparsity), the network learns to reconstruct original input ignoring the noise
 - Resulting encoding keeping the most important information for reconstruction
 - Interest
 - Input a noisy image and learn to reconstruct its clean version (supervised)

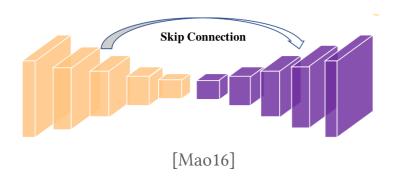


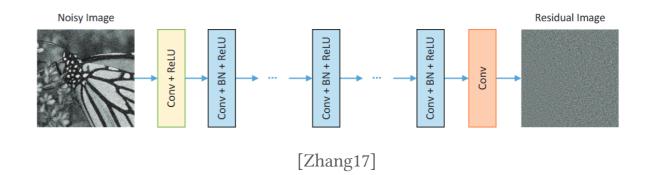


[Vincent10] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, et P. A. Manzagol, « Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion », Journal of Machine Learning Research, vol. 11, p. 3371--3408, 2010. [Mao16] X. Mao, C. Shen, et Y.-B. Yang, « Image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections », Advances in Neural Information Processing Systems 29 (NIPS 2016), p. 9, 2016.

- Residual Learning [He16]
 - Learn to predict the residual signal instead of the signal itself
 - Gives a reference of what is to be reconstructed
 - Enables learning deeper networks
 - RedNet [Mao16] is an autoencoder with skip-connections between layers of same size
 - DnCNN [Zhang17] uses a global residual
 - It learns the noise instead of the denoised signal





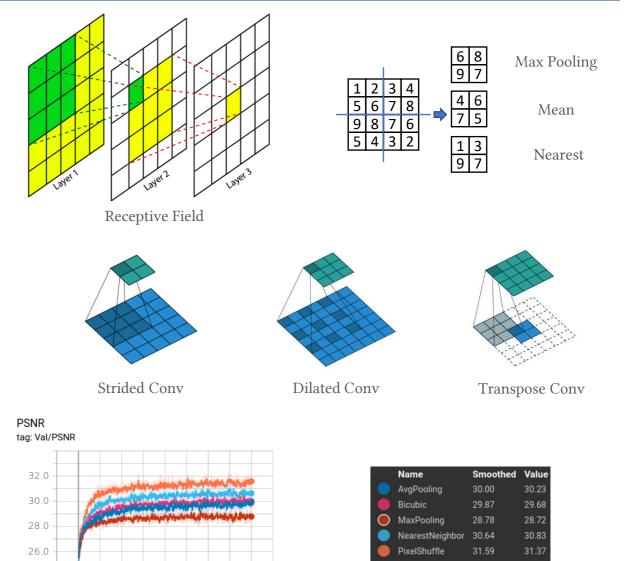


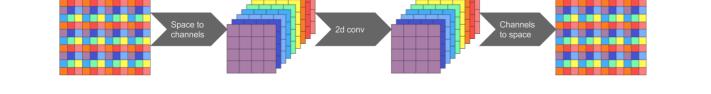
[He16] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. [Zhang17] Zhang, Kai, et al. "Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising." IEEE Transactions on Image Processing 26.7 (2017): 3142-3155.

[Mao16] X. Mao, C. Shen, et Y.-B. Yang, « Image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections », Advances in Neural Information Processing Systems 29 (NIPS 2016), p. 9, 2016.

CNNs for Denoising: Others

- Multi-Scale Learning
 - Use feature maps at different scales into the network
 - Different justifications:
 - Reduce the computations in the branches of lower scales
 - Enables the network to use information at different resolution
 - An homogeneous block is learned easily at low scale
 - An high frequency block is learned better at high resolution
 - Enlarge the receptive field
 - Types of up/down-samplings:
 - Down: Pooling, Strided Convolution, Dilated Convolution, Pixel Shuffle [Shi16]
 - Up: Bicubic, Nearest Neighbor, Transpose-Convolution, Pixel Unshuffle



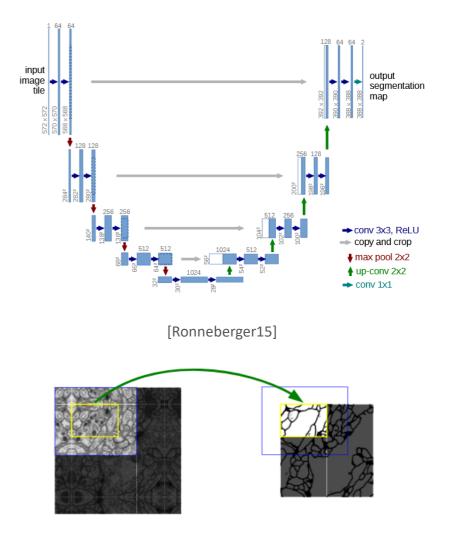


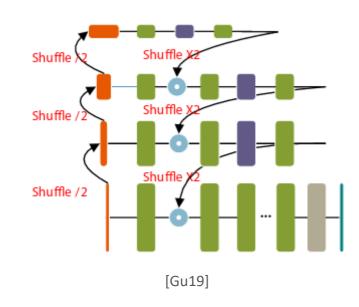
[Shi16] Shi, Wenzhe, et al. "Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

24.0

0.000 2.000M 4.000M 6.000M 8.000M

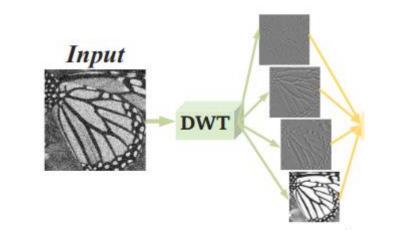
- Multi-Scale Learning
 - U-Net [Ronneberger15]
 - First to use U formed network
 - Self-Guided Network (SGN) [Gu19]
 - Self-guidance of features by lower-level (scale) features
 - Faster to train, better convergence, lighter network
 - 4x times smaller/faster than RedNet [Mao16]



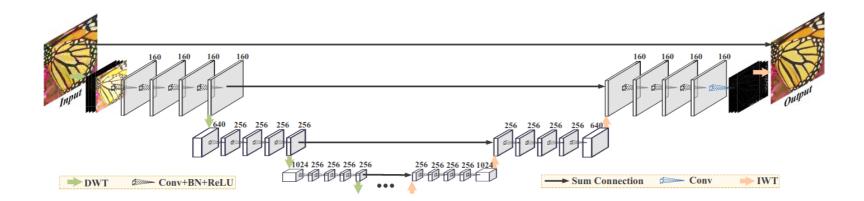


[Ronneberger15] Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015. [Gu19] Gu, Shuhang, et al. "Self-guided network for fast image denoising." Proceedings of the IEEE International Conference on Computer Vision. 2019.

- Multi-Scale Learning
 - Multi-level Wavelet CNN (MWCNN) [Liu18]
 - Use Wavelet decomposition as down/up sampling operator
 - No Information loss
 - Introduction of expert based knowledge into the network

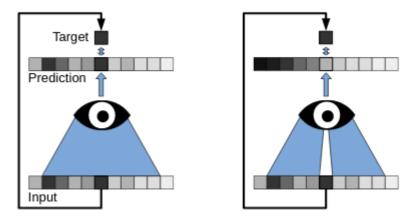


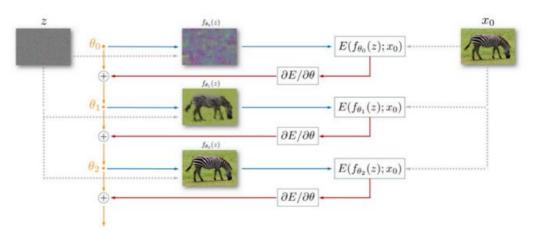
$$\mathbf{f}_{LL} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad \mathbf{f}_{LH} = \begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix}, \mathbf{f}_{HL} = \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}, \mathbf{f}_{HH} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$



[Liu18] Liu, Pengju, et al. "Multi-level wavelet-CNN for image restoration." Proceedings of the IEEE conference on computer vision and pattern recognition workshops. 2018.

- GANs
- Noise2Void (N2V) [Krull19]
 - Self-Supervised Learning → Learned to reconstruct an image using only itself with some pixels removed
 - Assumption of pixel-independent noise
- Deep Image Prior [Ulyanov18]
 - Counter intuitive strategy!
 - Learns a randomly initialized neural network Θ that maps a vector z to the noisy image.
 - The network "resists" to learn the target itself because of its inner prior on natural image, coming from its handcrafted architecture.
 - Eventually, once an optimal point reached, forward z and obtained the denoised image!





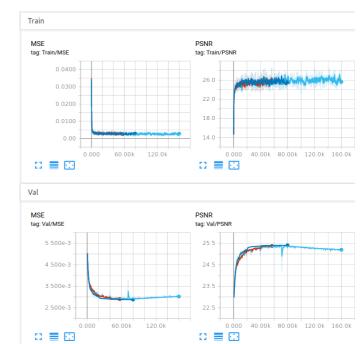
[Krull19] Krull, Alexander, Tim-Oliver Buchholz, and Florian Jug. "Noise2void-learning denoising from single noisy images." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. [Ulyanov18] Ulyanov, Dmitry, Andrea Vedaldi, and Victor Lempitsky. "Deep image prior." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.

- Theano first DL framework (FW) 2007, no longer maintained since 2017
- Caffe (2013), Berkley Artificial Intelligence Research (BAIR), Caffe2 (2017), Facebook
- Tensorflow (2015), Google \rightarrow First to be massively used, lot of open-source code
- Keras: Interface over Tensorflow (2015), Francois Cholet , now Google
- Pytorch: Native Python interface with Torch backend (2017), Facebook \rightarrow Used in Practical Work
- MatConvNet (Matlab), CNTK (Microsoft),
- N2D2: Only French FW? CEA List, industrials and academic partners (2017)
- ONNX common interface between FWs, Facebook and Microsoft
 - Enables alternating between FWs
- Perceptilabs: graphs to Tensorflow via a GUI

O PyTorch

📎 N2D2

- Prepare the dataset
 - Select the data according to the problem to solve
 - Data Augmentation: rotation, flips, noising \rightarrow Bring diversity/ Make the learning more robust
- Design the network architecture
 - Still empirical for now, Some attempt to automate: reinforcement learning driven denoising toolbox [Yu18], genetic algo for architecture [Suganuma18]
- Choose the optimization scheme
 - Optimizer: Type of gradient-based optimization strategy , LR Decay (Step, Exponential, Adaptive, ...)
 - Loss type, Number of Iteration, Evaluation Strategy
- Train
 - Optimal on Graphics Processing Units (GPUs) <u>for now</u>...
 - Monitoring \rightarrow Tensorboard
- Post-training Optimization:
 - Weight quantization/pruning (<u>TensorRT</u>, self-ensemble inference)
- Test and integration



[Yu18] K. Yu, C. Dong, L. Lin, et C. C. Loy, « Crafting a Toolchain for Image Restoration by Deep Reinforcement Learning », in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, juin 2018, p. 2443-2452, doi: 10.1109/CVPR.2018.00259.[Suganuma18] M. Suganuma, M. Ozay, et T. Okatani, « Exploiting the Potential of Standard Convolutional Autoencoders for Image Restoration by Evolutionary Search », in Proceedings of the 35th International Conference on Machine Learning, Stockholm Sweden, juill. 2018, vol. 80, p. 4771–4780.

I. Context

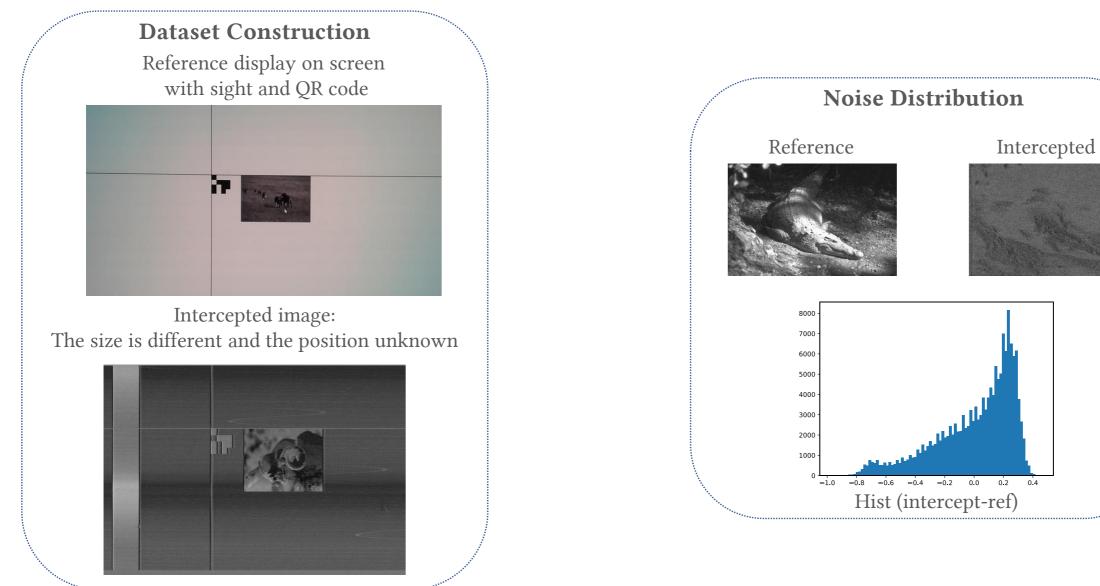
II . Problem Definition

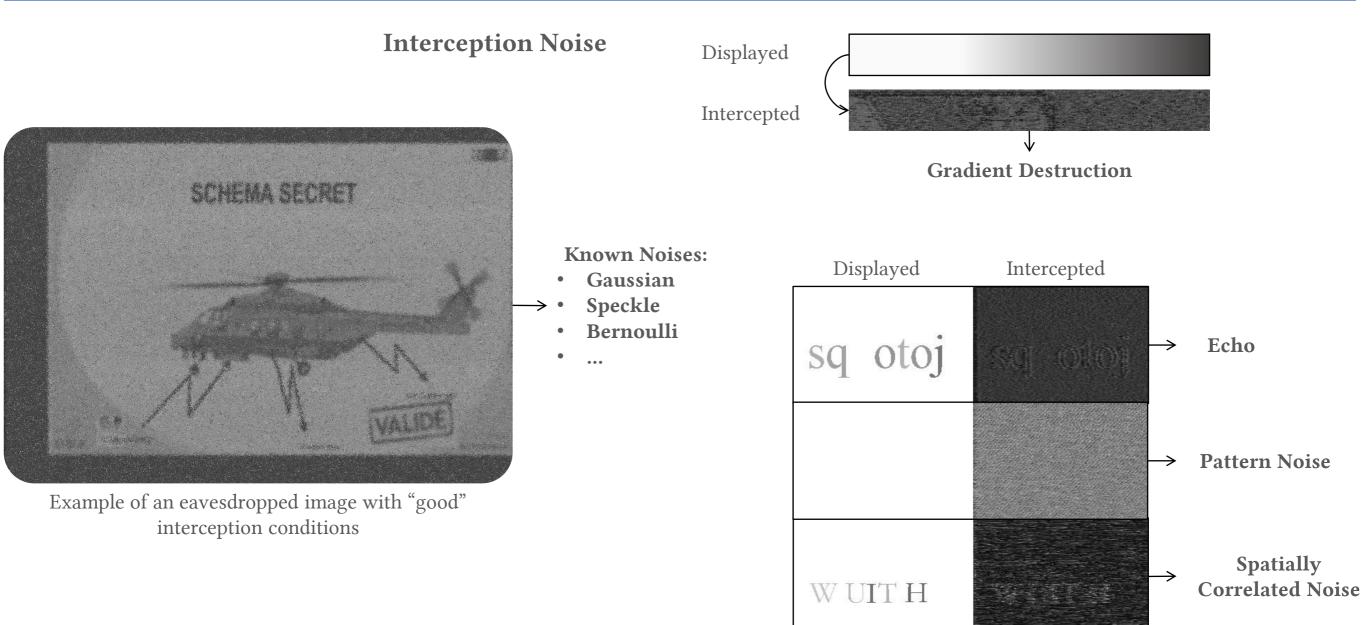
- Digital Image and Noise
- Noise Measure
- II . « Expert-Based » Denoising
 - Kernel-Based Filtering
 - Advanced Filtering
- III . « Learning-Based » Denoising
 - Deep Learning
 - Convolutional Neural Networks
 - CNN Architectures for Denoising
 - Towards Less Supervision
 - Prototyping Process

IV . Eavedropped Image Denoising

- Why is it complicated?
- Existing Solutions
- V . Challenges and Perspectives
- VI . Practical Work Overview

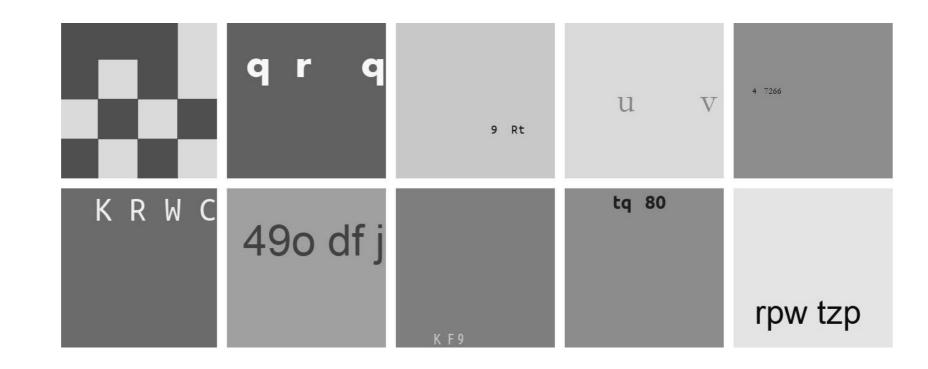
Why is it complicated?



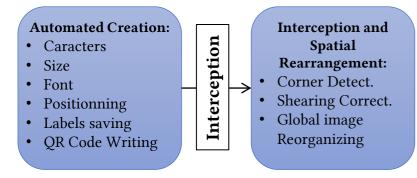


Automated Creation:

- Caracters
- Size
- Font
- Positionning
- Labels saving
- QR Code Writing

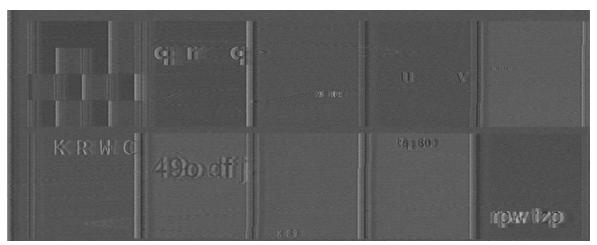


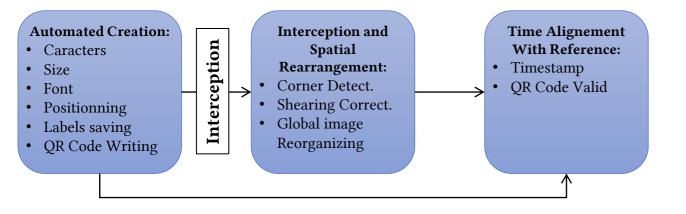
[Lemarchand20] F. Lemarchand, C. Marlin, F. Montreuil, E. Nogues, et M. Pelcat, « Electro-Magnetic Side-Channel Attack Through Learned Denoising and Classification », in ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, May 2020, p. 2882-2886, doi: 10.1109/ICASSP40776.2020.9053913.

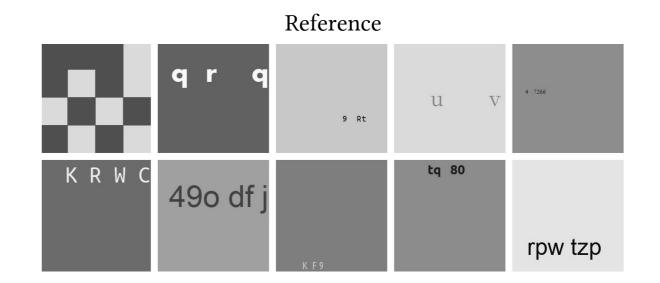


Intercepted

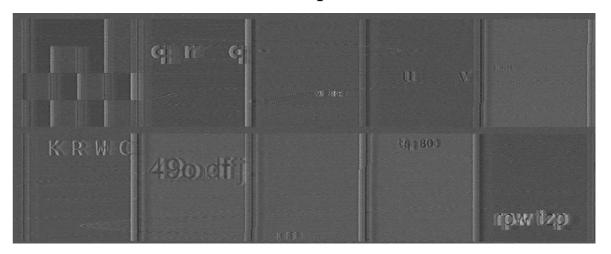
Rearranged

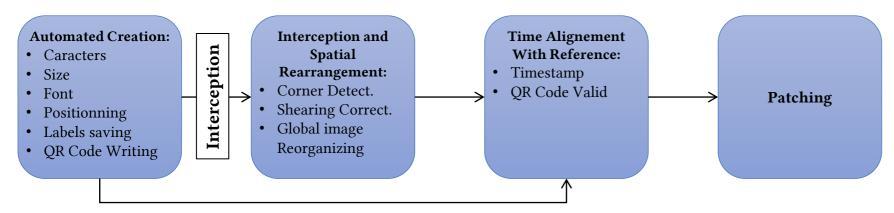






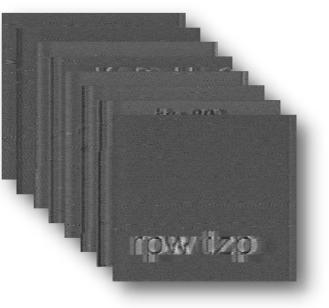
Intercepted



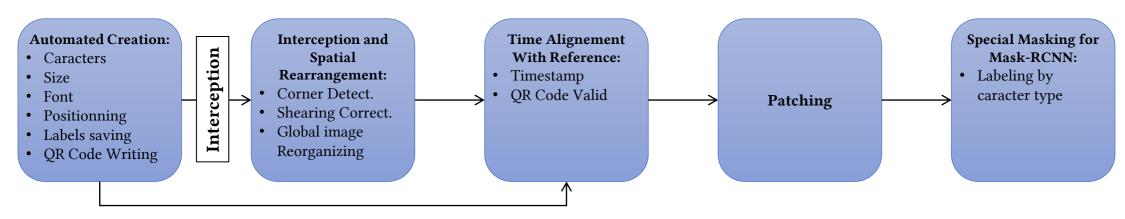


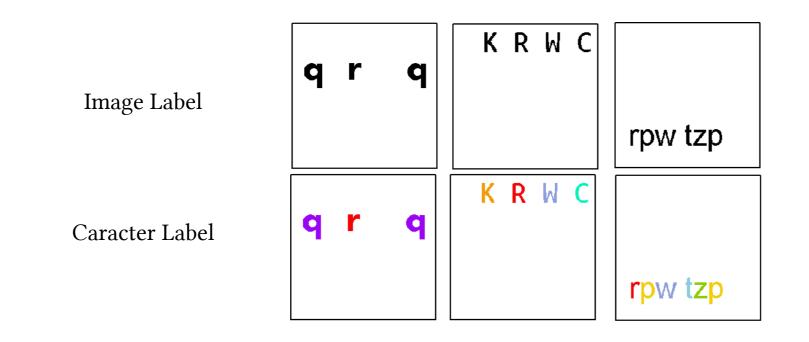
8	qr q	9 Rt	u v	* 1266
KRWC	49o df j	K F 9	tq 80	rpw tzp

qr	(1 1/50
	95 HAZ		
KRWC 490	odfij	tq 1803	
	K.19		npwilap

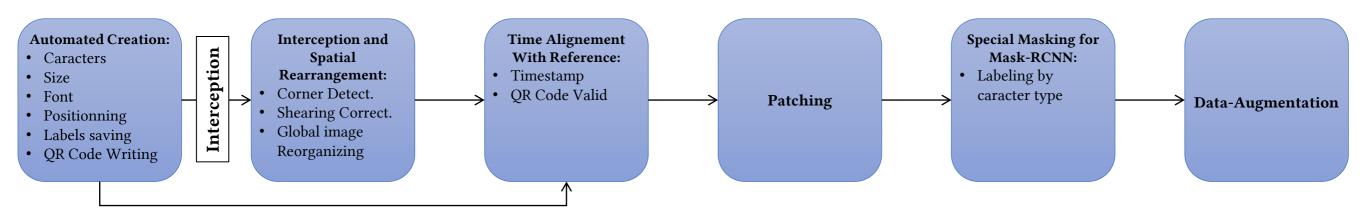


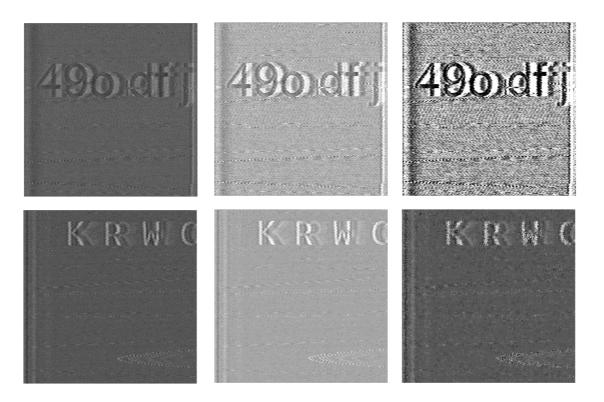
→





Specific Dataset Building





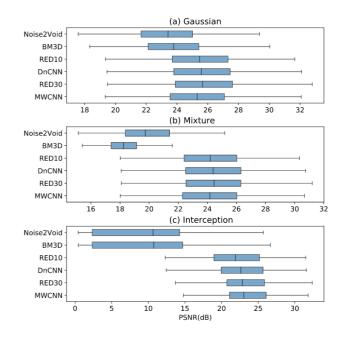
Towards Eavesdropped Image Denoising

Obtained Corpus

- Available: <u>https://github.com/opendenoising/interception_dataset</u>
- Size :
 - Samples size: 256x256x1
 - Database size: 98.725 training samples/ 12.563 test and validation samples
- Acquiring parameters:
 - Connectors: DVI, VGA, DP, HDMI
 - 3 antennas
 - Different distances
 - 3 screens with different resolutions
 - Zoom 100% to maintain font scales

Interception Noise and Existing Algorithms

825	Noisy	BM3D	RED10	RED30	DNCNN	MWCNN	Noise2Void	Clean
u		1 Service			ALT AN		- Area	1 Area 1
Issia						2/ ²		
Gat							11 Second	
	14,64/0,28	21,89/0,45	22,58/0,52	22,64/0,53	22,6/0,53	22,61/0,54	21,19/0,37	
		A	- And	200	200	- Aline	27	1000
kture		<u> </u>			-		199	5.3
Mi	- 10 M	-17		- 27	- 57	-67	= 7	
0	-10,74/6.13	18,58/0,3	23,23/0,69	23,67/0,72	23,5/0,11	23,25/0,71	20,2/0,57	
-Lik	90 D1Jj	90 D1Jj	90 D1Jj	90 D1Jj	90 D1Jj	90 D1Jj	90 D1Jj	90 D1Jj
ption								
Interception-Lik								
Int	17,15/0,12	21,87/0,98	54,64/0,99	52,99/0,99	55,02/0,99	57,21/0,99	21,67/0,98	
u			100					
eptic		- U TIAR	O THAT	U 7JAP	1 GAF	u 7jap	u 7jAP	u 7jAP
Interception				¥1-				
1	7,62/0,43	7,63/0,82	19,16/0,9	21,62/0,94	19,51/0,95	20,02/0,94	7,61/0,67	



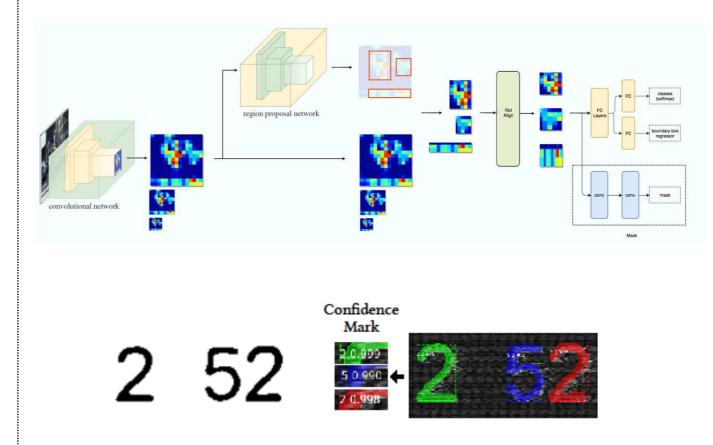
[Lemarchand20] Lemarchand, Florian, et al. "OpenDenoising: an Extensible Benchmark for Building Comparative Studies of Image Denoisers." ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020.

ToxicIA

- Compared Methods:
 - Denoising: BM3D [3], Autoencoder [4], Noise2Noise [5], DnCNN [6], Mask-RCNN [7]
 - + OCR: Tesseract [8]

Reference	JS FP	PY 4BOV	QET LI
Interception	45 - P.	77 -340M	WET 1
BM3D	41 Z.	如"小都"的	NETN
Autoencoder	<i>.</i> /9 ⊽ P	Y 4BOV	QET LI
M-RCNN	JS FP	PY 480 V	QET LI

 Our Proposal: Join Denoising and Classification → Mask-RCNN

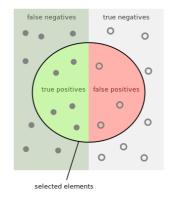


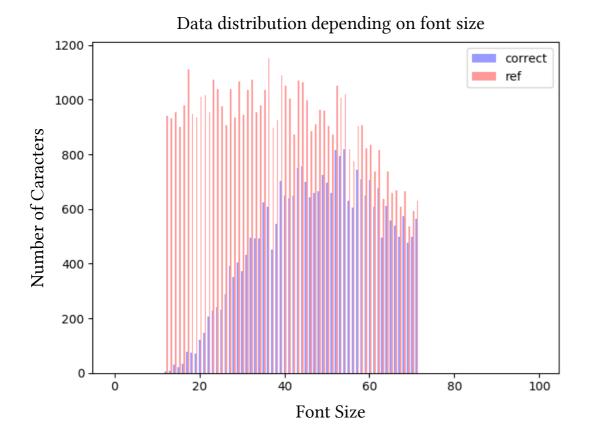
Architecture	OCR	Processing Type	F-Score (Caracter-wise)	
Raw		Ø	0,02	
BM3D		Denoising	0,18	•
Auto-Encoder		Denoising	0,21	
SegNet [9]	Tesseract	Semantic Segmentation	0,23	٠
RaGAN [10]		Denoising	0,24	
DnCNN		Denoising	0,30	·
U-Net [11]		Denoising	0,31	
Mask-RCNN		Instance Segmentation	0,55	
Wask-KUNIN	Ø	Instance Segmentation	0,68	

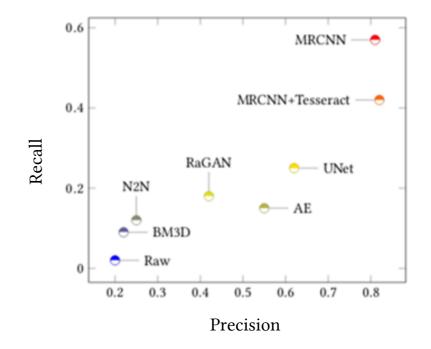
$$F-Score = 2. \frac{precision.recall}{precision+recall}$$

• precision =
$$\frac{TP}{TP+FP}$$

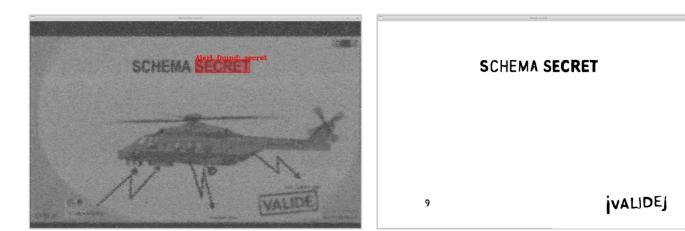
•
$$recall = \frac{TP}{TP + FN}$$

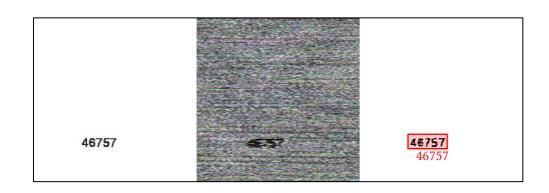


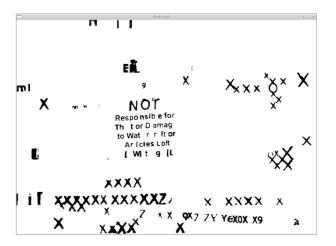


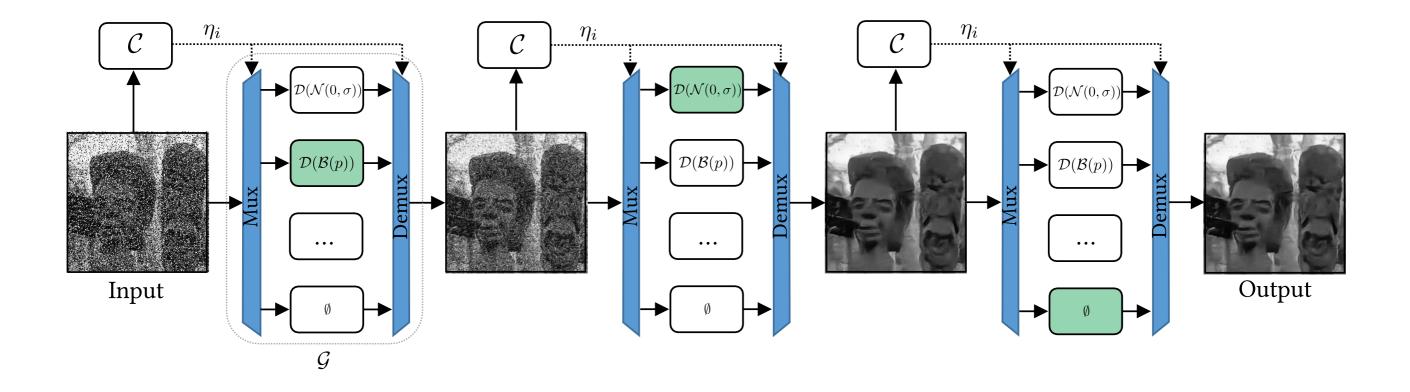


- Mask-RCNN + Post Processing:
 - Text Line detection: Hough Transform
 SCHEMA SECRET
 - Approximate sub-string search: Bitap [12]
 - Found string: schemaseoret
 - Researched word: secret

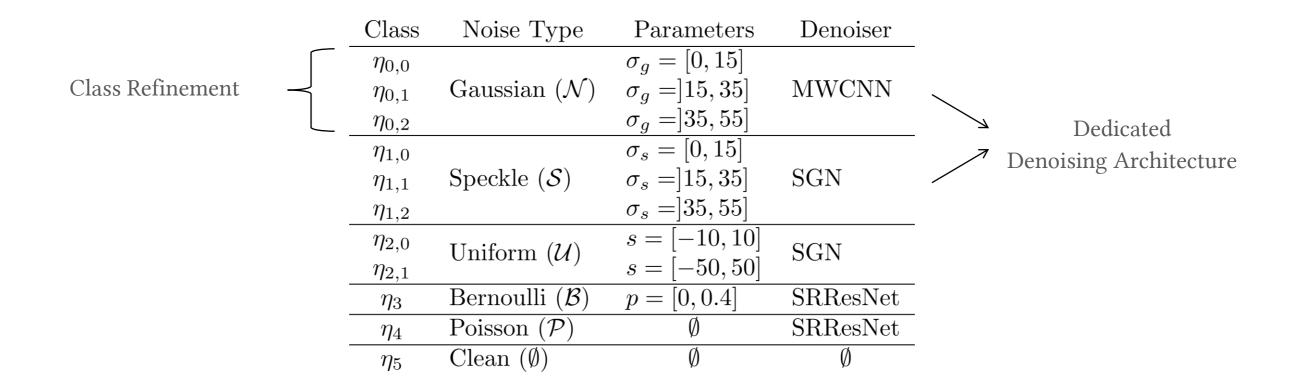








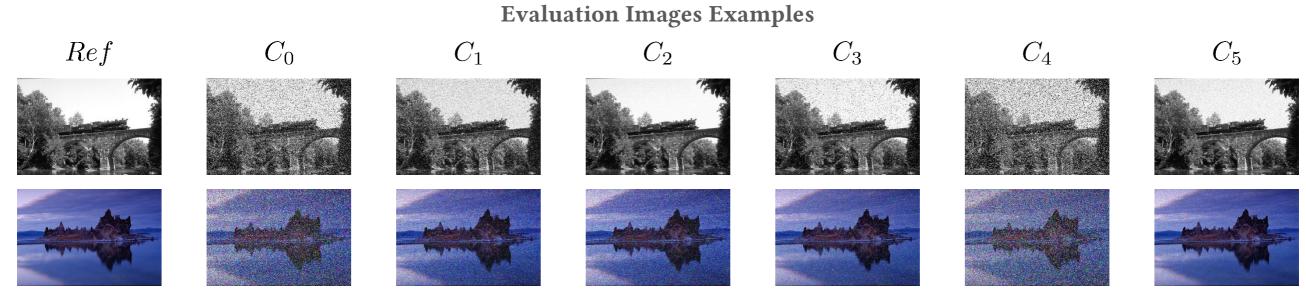
[Lemarchand20] F. Lemarchand, E. Nogues, et M. Pelcat, « NoiseBreaker: Gradual Image Denoising Guided by Noise Analysis », in MMSP20.



Evaluation Noise Mixtures

	Noise 1	Noise 2
C_0	$\mathcal{N}([0,55])$	$\mathcal{B}([0,0.4])$
C_1	$\mathcal{N}([0,55])$	$\mathcal{S}([0,55])$
C_2	$\mathcal{N}([0,55])$	${\mathcal P}$
C_3	$\mathcal{B}([0,0.4])$	$\mathcal{S}([0,55])$
C_4	$\mathcal{B}([0,0.4])$	${\mathcal P}$
C_5	$\mathcal{S}([0,55])$	\mathcal{P}

• Same configuration as Liu et al.



Towards Eavesdropped Image Denoising

Florian Lemarchand (IETR, France)

Evaluation metrics: PSNR SSIM

Evaluation data:

BSD68-Grayscale [10] BSD68-RGB [10]

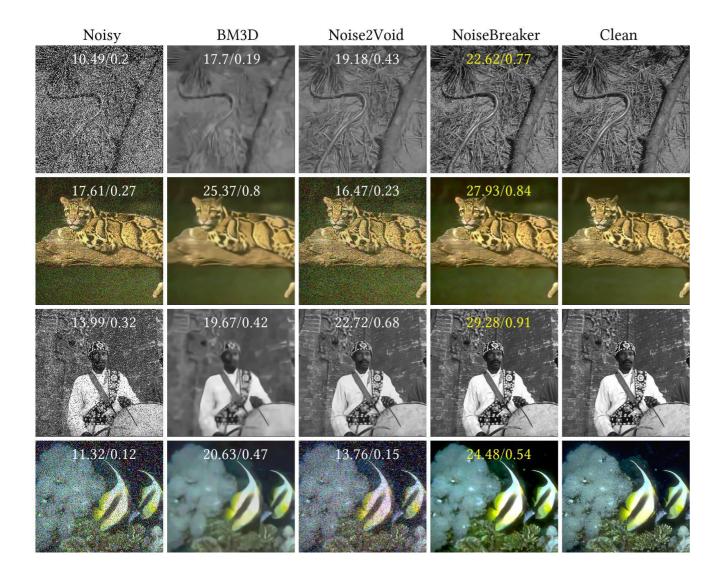
- BM3D/CBM3D applied with σ = 50
- N2V retrained on each mixture
- Results of Liu et al. taken from paper

Dataset	Denoiser	C_0	C_1	C_2	C_3	C_4	C_5		
	Noisy	12.09/0.19	16.98/0.36	18.21/0.42	14.05/0.28	13.21/0.24	24.96/0.73		
	BM3D	21.49/0.54	24.00/0.61	24.28/0.62	22.30/0.56	22.05/0.56	24.95/0.65		
BSD68 Grayscale	Noise2Void	22.13/0.60	20.47/0.36	20.55/0.35	24.06/0.68	23.70/0.66	25.08/0.66		
	Liu et al.	21.04/0.52	25.96/0.74	27.17/0.82	27.11/0.80	26.83/0.77	27.52/0.83	п	2 DENID 1207 SCIM
	NoiseBreaker (Ours)	23.68/0.68	26.33/0.82	27.19/0.84	29.94/0.90	29.70/0.91	30.85/0.92	Ŷ	+ 2dB PSNR, +13% SSIM
	Noisy	11.71/0.18	16.98/0.36	18.05/0.40	13.00/0.24	13.01/0.24	25.15/0.74		
	BM3D	21.24/0.57	24.72/0.66	24.88/0.66	21.96/0.59	22.00/0.59	25.73/0.70		
BSD68 RGB	Noise2Void	13.34/0.17	17.60/0.31	18.30/0.34	15.45/0.24	15.63/0.25	25.27/0.66		
	Liu et al.	21.02/0.60	23.56/0.68	24.15/0.69	18.84/0.51	19.23/0.53	20.13/0.54	п	+ 4,8dB PSNR, +38% SSIM
	NoiseBreaker (Ours)	21.88/0.71	26.81/0.82	26.58/0.82	25.45/0.81	25.20/0.80	29.77/0.88	$\hat{\Lambda}$	+ 4,000 1 51010, + 30% 551101

[10] D. Martin, C. Fowlkes, D. Tal, et J. Malik, « A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics », in Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, Vancouver, BC, Canada, 2001, vol. 2, p. 416-423, doi: 10.1109/ICCV.2001.937655.

NoiseBreaker

Subjective Results



Discussion

First denoising step may remove the second noise.

A wrong denoiser may be applied.

Noisy image may be classified as clean when low noise intensity.

I. Context

II . Problem Definition

- Digital Image and Noise
- Noise Measure
- II . « Expert-Based » Denoising
 - Kernel-Based Filtering
 - Advanced Filtering
- III . « Learning-Based » Denoising
 - Deep Learning
 - Convolutional Neural Networks
 - CNN Architectures for Denoising
 - Towards Less Supervision
 - Prototyping Process
- IV . Eavedropped Image Denoising
 - Why is it complicated?
 - Existing Solutions

V . Challenges and Perspectives

VI. Practical Work Overview

- Eavesdropped Image Denoising
 - Building of large and representative dataset:
 - Clean references expensive to obtain
 - Two interception campaigns can be very different
 - Type of antenna, distance, perturbations (phones, ...), raster settings
 - Unknown and 'Unstable' Noise model
 - Video denoising to benefit from time integration
- Deep Learning (DL)
 - Requires large datasets and labelisation for supervised learning Fine-Tuning
 - Advances on few-shot learning \rightarrow Learning from only few examples [Koch15]
 - DL is resource-hungry: both computation and memory \rightarrow Specific hardware and energy consumption
 - New training strategies? On CPU?
 - Fixed-Point Mixed-precision Networks [Micikevicius17]
 - Explainability
 - XAI: eXplainable Artificial Intelligence [Zhou16]
 - Security
 - How to test all responses to input?
 - Adversarial Networks

[Micikevicius17] Micikevicius, Paulius, et al. "Mixed precision training." arXiv preprint arXiv:1710.03740 (2017) [Koch15] Koch Gregory, Richard Zemel, and Ruslan Salakhutdinov, "Siamese neural networks for one-shot image recognition

[Koch15] Koch, Gregory, Richard Zemel, and Ruslan Salakhutdinov. "Siamese neural networks for one-shot image recognition." ICML deep learning workshop. Vol. 2. 2015. [Zhou16] Zhou, Bolei, et al. "Learning deep features for discriminative localization." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

- Supervision: Maxime Pelcat and Florian Lemarchand
- PW1 : Basics of Image Processing and Denoising (1h45)
- PW2 : Toward Eavesdropping Denoising (1h45)