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Who are we?

Florian Lemarchand

• Engineer INSA Rennes « Electronique et Informatique Industrielle (EII) », 2018

• PhD Student since October 2018:
• Lab: “Institut D’Electronique et des Technologies du numéRique de Rennes” (IETR)

• Team: “ Video Analysis and Architecture Design for Embedded Resources ” (VAADER)

• PhD Founded by “ Pole d’Excellence Cyber ” (PEC) → Bretagne council et French ministry of armed forces

• Advisors : Erwan Nogues and Maxime Pelcat

• PhD Subject:

• “Recognition of Images and Intercepted Signal using Artificial Intelligence ”
• Technical Domains :

• Image Restoration
• Machine (Deep) Learning

• More information on my research on my webpage!
• Contact: florian.lemarchand@insa-rennes.fr

• What about you?
• Background: Image Processing? Machine Learning? 

https://www.ietr.fr/?author=10&lang=en
https://www.ietr.fr/spip.php?article1619
https://www.pole-excellence-cyber.org/
http://mpelcat.org/
https://florianlemarchand.github.io/
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Problem Definition

Digital Image

• Pixel (Picture Element) 
→ or

• Image → HxWxC array of pixels 
• Height, Width, Channels 
• C = 1 for grayscale , C=3 for RGB (Red Green Blue), C>100 for hyperspectral 

• Content:
• Natural Images (pictures)
• Synthetic Images (computer screen, video games, cartoon, …)

R G B
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Problem Definition

Image Noise
• Noise ≠ Signal

• Signal is the information contained in an image
• Noise is the undesired variation that disrupts the interpretation

• Noise Sources 
• Defects of sensing and transmission systems

• Image sensors: Defects of hardware surfaces / Analogic to Digital conversion errors
• Signal Loss (electro-magnetic interception)
• Sensing content itself: when only few photons (space imaging)
• Lossy Compression/Decompression (JPEG)

• Poor acquisition conditions (light, rain, blur)
• Falsification (incoherence in Bayer patterns)

• Noise Types:
• Pixelwise 
• Spatially Correlated
• Data Dependent 
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Primary Noise:

• Bernoulli

• Speckle

• Poisson

• Gaussian 

• Uniform

Sequential Mixture Noise: 

• No Noise

• Gaussian and Bernoulli

• Bernoulli and Speckle

Problem Definition

Noise Models
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How to measure how noisy is an image?

• Subjective/Qualitative rating
• N subjects ask to rate image quality (A=x, B=y) or compare two versions (A > B)

• Mean Opinion Score (MOS)

• Objective Metrics
• Mean Squared Error (MSE) / Root MSE (RMSE) / Sum of Absolute Errors (SAE)

• Peak Noise to Signal Ratio (PSNR)

• Structural SIMilarity (SSIM) [Wang04]→ measure spatial coherence

• Learned metrics:
• Predict subjective rating using a Neural network [Talebi18]

• Histogram of pixel values 

Problem Definition

AWGN Speckle S&P

Reference

Sigma or p

50

100

[Wang04] Wang, Zhou, et al. "Image quality assessment: from error visibility to structural similarity." IEEE transactions on image processing 13.4 (2004): 600-612.
[Talebi18] Talebi, Hossein, and Peyman Milanfar. "NIMA: Neural image assessment." IEEE Transactions on Image Processing 27.8 (2018): 3998-4011.



Florian Lemarchand (IETR, France)11Towards Eavesdropped Image Denoising

[Lemarchand20] F. Lemarchand, C. Marlin, F. Montreuil, E. Nogues, et M. Pelcat, « Electro-Magnetic Side-Channel Attack Through Learned Denoising and Classification », in ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, May 2020, p. 
2882-2886, doi: 10.1109/ICASSP40776.2020.9053913.

Problem Definition

• When usual metrics do not make sense: SSIM, PSNR, …
• Use of application specific metrics, e.g.: character recognition a.k.a. Optical Caracter Recognition(OCR) [Lemarchand20]

Image 
Generation

(DIFFUSION)

Signal 
Interception

OCR Denoising

Raster

Evaluation
(CRR)

DFFUSION
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Filtering

• Common kernels:
• mean: 𝑎𝑘 =

1

𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒

• median / min / max: 𝑜𝑢𝑡 = 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟(𝑥0, … , 𝑥𝑘)
• Gaussian / approximate Gaussian

• Difficulties:

• Padding: Add values around the image to enable kernel filtering
• Computation optimizations:

• Kernel Separability: Horizontal and Vertical slides computed separately
• Previous results re-use 

• Issue: Does not adapt to content

Expert-Based Denoising

𝑥0 𝑥1 𝑥2
𝑥3 𝑥4 𝑥5
𝑥5 𝑥6 𝑥7

𝑎0𝑎1𝑎2
𝑎3𝑎4𝑎5
𝑎5𝑎6𝑎7

Filtering
Kernel

○

Data

Filtered Data

𝑓𝑖,𝑗 = 𝑎0. 𝑥0+ … +𝑎7. 𝑥7

1

9

1 1 1
1 1 1
1 1 1

=
1

3

1
1
1

∗
1

3
1 1 1

16 * 9 = 144 MACs 16 * 3 + 16 * 3 = 96 MACs 

https://github.com/vdumoulin/conv_arithmetic
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Thresholding in the transform domain

• Transform the image in a sparse representation that concentrate the signal, small coefficients are considered as noise and threshold

Expert-Based Denoising

Transform

Transform

Thresholding
Inverse 

Transform
Denoised 

Image

Transforms: FFT, DCT, Wavelets, …
Thresholds: Hard, Soft, Adaptive, Spatially Arbitrary, … 
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[Dabov07] K. Dabov, A. Foi, V. Katkovnik, et K. Egiazarian, « Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering », IEEE Trans. on Image Process., vol. 16, nᵒ 8, p. 2080-2095, août 2007, doi: 10.1109/TIP.2007.901238.

Expert-Based Denoising

BM3D: Block Matching 3D

3D Transform

Take a reference block and 
find “similar blocks”

Thresholding

Inverse Transform

Noisy Group

Denoised Group

Denoised Patch

x2

Global Filtering to avoid Block Effect
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Deep Learning

• AI → “ The effort to automate tasks normally performed by humans”
• ML → The “program” defines itself the rules to solve a problem from data (examples)
• DL →ML that uses successive representations (layers), mostly abstract, to solve a problem

• The number of representation layers is called depth

• Types of Deep Neural Networks:
• Multi-Layer Perceptrons

• All “neurons” are connected to each other and connections represented by learnable values (weights). The 
neuron itself is a non-linear activation function,

• Convolutional Neural Networks [LeCun98]
• The network is made of groups of filters (layers) convolved to the input or previous layer results resulting in 

feature maps,
• The filters are learnable and outputs of layers are passed through activation function
• First Success: Classification 

Artificial Intelligence (AI)

Machine Learning (ML)

Deep Learning (DL)

[LeCun98] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et others, « Gradient-based learning applied to document recognition », Proceedings of the IEEE, vol. 86, nᵒ 11, p. 2278–2324, 1998.

https://www.researchgate.net/figure/Recent-ConvNets-proposed-in-ILSVRC_fig1_338797371
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://www.researchgate.net/figure/The-structure-of-a-multilayer-perceptron-neural-network_fig3_241347660
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Learned Denoising

Feed-Forward Neural Network, Back-Propagation and Weights Optimisation

𝐿 = 𝑔 (ො𝑦, 𝑦)

𝑥, ො𝑦, 𝑦: input, output and reference images
𝑊: weights of the neural network
𝐿: loss function
𝐺𝑟𝑎𝑑: gradients of 𝐿 according to 𝑊
𝑙𝑟: learning rate

𝐺𝑟𝑎𝑑 =
𝜕𝐿

𝜕𝑊

ො𝑦 = 𝑓(𝑥,𝑊)

𝑊

𝑥

𝑊′ = ℎ(𝐺𝑟𝑎𝑑, 𝑙𝑟)

Recurrent

SGD[Sutskever13], RMSProp[Graves14], Adam[Kingma17], …

[Kingma17] D. P. Kingma et J. Ba, « Adam: A Method for Stochastic Optimization », arXiv:1412.6980 [cs], janv. 2017 
[Graves14] A. Graves, « Generating Sequences With Recurrent Neural Networks », arXiv:1308.0850 [cs], juin 2014
[Sutskever13] I. Sutskever, J. Martens, G. Dahl, et G. Hinton, « On the importance of initialization and momentum in deep learning », p. 14
[Johnson16] J. Johnson, A. Alahi, et L. Fei-Fei, « Perceptual Losses for Real-Time Style Transfer and Super-Resolution », in Computer Vision – ECCV 2016, vol. 9906, B. Leibe, J. Matas, N. Sebe, et M. Welling, Éd. Cham: Springer International Publishing, 2016, p. 694-711.

MSE, Sobel Loss, Perceptual Loss [Johnson 6], …
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Convolutional Neural Networks

• Why convolutions?
• Scientists used to filter with kernel!
• Using filters requires less parameters than fully connecting layers   

• Why activations?
• An activation is  a non-linear function. Non-Linearity is required for complex modelling
• Without activations, all layers would collapse in one, being a linear combination of them,
• It enables layers to be learned independently from others. 

• For Denoising, three groups: GANs, Autoencoders, Others

• [Jain09] → First to use image to image network instead of image to class

22

23

24

25

26

27

28

PS
N

R
 (d

B
)

Evolution of Denoising Performances on 
BSD68 Grayscale AWGN 50

Noisy = 14.15 dB

Input 
Image

Filters
Feature Maps

A
ct

iv
at

io
n

Layer 0 Layer 1

ReLu TanH Sigmoid

[Jain09] V. Jain et S. Seung, « Natural image denoising with convolutional networks », in Advances in neural information processing systems, 2009, p. 769–776.

https://ai.stackexchange.com/questions/5493/what-is-the-purpose-of-an-activation-function-in-neural-networks
https://www.researchgate.net/figure/Activation-Functions-ReLU-Tanh-Sigmoid_fig4_327435257
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
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CNNs for Denoising: GANs

• Generative Adversarial Networks [Goodfellow14]   
• Principle

• Two networks: a Generator G and a Discriminator D

• G tries to generate an image close enough to real samples

• D tries to determine if G samples are real of fake

• G and D trained to fool each other

• Interest?
• Generate new samples from a distribution

• Input an image instead of a noise vector to make G denoise

[Goodfellow14] Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.
[Radford15] Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015).
[Karras17] T. Karras, T. Aila, S. Laine, et J. Lehtinen, « Progressive growing of gans for improved quality, stability, and variation », arXiv preprint arXiv:1710.10196, 2017
[Ledig17] C. Ledig et al., « Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network », in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, juill. 2017, p. 105-114, doi: 10.1109/CVPR.2017.19.

[Karras17]
[Ledig17]

[Radford15]
More Applications!

https://medium.com/machinelearningadvantage/create-any-image-with-c-and-a-generative-adversarial-network-6031a4b90dec
https://github.com/tkarras/progressive_growing_of_gans
https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/
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CNNs for Denoising: Auto-encoders

• Autoencoders [Vincent10]   
• Principle

• Bottleneck network that learns dimension reduction without supervision

• Input is corrupted (noise, sparsity),  the network learns to reconstruct original 
input ignoring the noise

• Resulting encoding keeping the most important information for 
reconstruction

• Interest
• Input a noisy image and learn to reconstruct its clean version (supervised)

[Vincent10] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, et P. A. Manzagol, « Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion », Journal of Machine Learning Research, vol. 11, p. 3371--3408, 2010.
[Mao16] X. Mao, C. Shen, et Y.-B. Yang, « Image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections », Advances in Neural Information Processing Systems 29 (NIPS 2016), p. 9, 2016.

[Mao16]
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CNNs for Denoising: Others

[He16] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
[Zhang17] Zhang, Kai, et al. "Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising." IEEE Transactions on Image Processing 26.7 (2017): 3142-3155.
[Mao16] X. Mao, C. Shen, et Y.-B. Yang, « Image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections », Advances in Neural Information Processing Systems 29 (NIPS 2016), p. 9, 2016.

• Residual Learning [He16]   
• Learn to predict the residual signal instead of the signal itself
• Gives a reference of what is to be reconstructed
• Enables learning deeper networks
• RedNet [Mao16] is an autoencoder with skip-connections 

between layers of same size
• DnCNN [Zhang17] uses a global residual

• It learns the noise instead of the denoised signal

[He16] 

[Mao16] [Zhang17] 

https://github.com/JindongJiang/RedNet
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CNNs for Denoising: Others

[Shi16] Shi, Wenzhe, et al. "Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

• Multi-Scale Learning
• Use feature maps at different scales into the network   
• Different justifications:

• Reduce the computations in the branches of lower scales

• Enables the network to use information at different resolution
• An homogeneous block is learned easily at low scale

• An high frequency block is learned better at high resolution

• Enlarge the receptive field

• Types of up/down-samplings:
• Down: Pooling, Strided Convolution, Dilated Convolution, Pixel Shuffle [Shi16]

• Up: Bicubic, Nearest Neighbor, Transpose-Convolution, Pixel Unshuffle

Receptive Field

Strided Conv Dilated Conv Transpose Conv

1 2 3 4
5 6 7 8
9 8 7 6
5 4 3 2

6 8
9 7

4 6
7 5

1 3
9 7

Max Pooling

Mean

Nearest

https://theaisummer.com/receptive-field/
https://github.com/vdumoulin/conv_arithmetic
https://github.com/vdumoulin/conv_arithmetic
https://github.com/vdumoulin/conv_arithmetic
https://www.inference.vc/holiday-special-deriving-the-subpixel-cnn-from-first-principles/


Florian Lemarchand (IETR, France)24Towards Eavesdropped Image Denoising

CNNs for Denoising: Others

• Multi-Scale Learning
• U-Net [Ronneberger15]

• First to use U formed network

• Self-Guided Network (SGN) [Gu19]
• Self-guidance of features by lower-level (scale) features

• Faster to train, better convergence, lighter network
• 4x times smaller/faster than RedNet [Mao16]

[Ronneberger15] Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015.
[Gu19] Gu, Shuhang, et al. "Self-guided network for fast image denoising." Proceedings of the IEEE International Conference on Computer Vision. 2019.

[Ronneberger15]

[Gu19]
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CNNs for Denoising: Others

[Liu18] Liu, Pengju, et al. "Multi-level wavelet-CNN for image restoration." Proceedings of the IEEE conference on computer vision and pattern recognition workshops. 2018.

• Multi-Scale Learning
• Multi-level Wavelet CNN (MWCNN) [Liu18]

• Use Wavelet decomposition as down/up sampling operator
• No Information loss 

• Introduction of expert based knowledge into the network 
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Towards Less Supervision

• GANs

• Noise2Void (N2V) [Krull19]
• Self-Supervised Learning → Learned to reconstruct an image using only 

itself with some pixels removed
• Assumption of pixel-independent noise

• Deep Image Prior [Ulyanov18]
• Counter intuitive strategy! 
• Learns a randomly initialized neural network Ɵ that maps a vector z to the 

noisy image. 
• The network “resists” to learn the target itself because of its inner prior on 

natural image, coming from its handcrafted architecture.
• Eventually, once an optimal point reached, forward z and obtained the 

denoised image!

[Krull19] Krull, Alexander, Tim-Oliver Buchholz, and Florian Jug. "Noise2void-learning denoising from single noisy images." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.
[Ulyanov18] Ulyanov, Dmitry, Andrea Vedaldi, and Victor Lempitsky. "Deep image prior." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.

https://towardsdatascience.com/demystifying-deep-image-prior-7076e777e5ba
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Learning Frameworks

• Theano first DL framework (FW) 2007, no longer maintained since 2017

• Caffe (2013), Berkley Artificial Intelligence Research (BAIR), Caffe2 (2017), Facebook

• Tensorflow (2015), Google → First to be massively used, lot of open-source code 

• Keras: Interface over Tensorflow (2015), Francois Cholet , now Google

• Pytorch: Native Python interface with Torch backend (2017), Facebook → Used in Practical Work

• MatConvNet (Matlab), CNTK (Microsoft), …. 

• N2D2: Only French FW? CEA List, industrials and academic partners (2017)

• ONNX common interface between FWs, Facebook and Microsoft
• Enables alternating between FWs

• Perceptilabs: graphs to Tensorflow via a GUI
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Prototyping Process

• Prepare the dataset
• Select the data according to the problem to solve
• Data Augmentation: rotation, flips, noising→ Bring diversity/ Make the learning more robust 

• Design the network architecture
• Still empirical for now, Some attempt to automate: reinforcement learning driven denoising toolbox [Yu18], genetic algo for architecture [Suganuma18]

• Choose the optimization scheme
• Optimizer: Type of gradient-based optimization strategy , LR Decay ( Step, Exponential, Adaptive, …)
• Loss type, Number of Iteration, Evaluation Strategy 

• Train
• Optimal on Graphics Processing Units (GPUs) for now … 
• Monitoring → Tensorboard

• Post-training Optimization:
• Weight quantization/pruning ( TensorRT, self-ensemble inference)

• Test and integration

[Yu18] K. Yu, C. Dong, L. Lin, et C. C. Loy, « Crafting a Toolchain for Image Restoration by Deep Reinforcement Learning », in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, juin 2018, p. 2443-2452, doi: 10.1109/CVPR.2018.00259.[Suganuma18] M. Suganuma, M. Ozay, et T. Okatani, « Exploiting the Potential of Standard 
Convolutional Autoencoders for Image Restoration by Evolutionary Search », in Proceedings of the 35th International Conference on Machine Learning, Stockholmsmässan, Stockholm Sweden, juill. 2018, vol. 80, p. 4771–4780.

https://news.rice.edu/2020/03/02/deep-learning-rethink-overcomes-major-obstacle-in-ai-industry/
https://developer.nvidia.com/tensorrt
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Hist (intercept-ref)

Eavesdropped Image Denoising 

Intercepted

Reference display on screen
with sight and QR code 

Reference

Intercepted image:
The size is different and the position unknown

Dataset Construction

Noise Distribution

Why is it complicated?
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Eavesdropped Image Denoising 

Interception Noise

Example of an eavesdropped image with “good” 
interception conditions

Displayed

Intercepted

Gradient Destruction

Echo

Pattern Noise

Spatially 
Correlated Noise

Displayed Intercepted
Known Noises:
• Gaussian
• Speckle
• Bernoulli
• …
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Specific Dataset Building

Automated Creation:
• Caracters
• Size
• Font
• Positionning
• Labels saving
• QR Code Writing

[Lemarchand20] F. Lemarchand, C. Marlin, F. Montreuil, E. Nogues, et M. Pelcat, « Electro-Magnetic Side-Channel Attack Through Learned Denoising and Classification », in ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, May 2020, p. 
2882-2886, doi: 10.1109/ICASSP40776.2020.9053913.
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Automated Creation:
• Caracters
• Size
• Font
• Positionning
• Labels saving
• QR Code Writing

Interception and 
Spatial 

Rearrangement:
• Corner Detect.
• Shearing Correct.
• Global image 

Reorganizing In
te
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ti
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Rearranged

Intercepted

Specific Dataset Building
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Obtained Corpus

• Available: https://github.com/opendenoising/interception_dataset

• Size :
• Samples size: 256x256x1
• Database size: 98.725 training samples/ 12.563 test and validation 

samples

• Acquiring parameters:
• Connectors: DVI, VGA, DP, HDMI
• 3 antennas
• Different distances
• 3 screens with different resolutions
• Zoom 100% to maintain font scales

Specific Dataset Building

https://github.com/opendenoising/interception_dataset
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Eavesdropped Image Denoising 

Interception Noise and Existing Algorithms

[Lemarchand20] Lemarchand, Florian, et al. "OpenDenoising: an Extensible Benchmark for Building Comparative Studies of Image Denoisers." ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020.
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ToxicIA

• Compared Methods:
Denoising: BM3D [3], Autoencoder 
[4], Noise2Noise [5], DnCNN [6], 
Mask-RCNN [7]
+ OCR: Tesseract [8]

• Our Proposal:
Join Denoising and Classification
→ Mask-RCNN

Reference

Interception

BM3D

Autoencoder

M-RCNN
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Architecture OCR Processing Type
F-Score 

(Caracter-wise)

Raw

Tesseract

∅ 0,02

BM3D Denoising 0,18

Auto-Encoder Denoising 0,21

SegNet [9] Semantic Segmentation 0,23

RaGAN [10] Denoising 0,24

DnCNN Denoising 0,30

U-Net [11] Denoising 0,31

Mask-RCNN Instance Segmentation
0,55

∅ 0,68

ToxicIA

• F-Score = 2.
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 . 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑟𝑒𝑐𝑎𝑙𝑙

• 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃

• 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
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Data distribution depending on font size

Font Size
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46757

• Mask-RCNN + Post Processing:

• Text Line detection: Hough Transform

• Approximate sub-string search: Bitap [12]
• Found string: schemaseoret
• Researched word: secret

ToxicIA
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NoiseBreaker

… … …

[Lemarchand20] F. Lemarchand, E. Nogues, et M. Pelcat, « NoiseBreaker: Gradual Image Denoising Guided by Noise Analysis », in MMSP20.
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Primary Noise Classes and Denoisers Architectures

Class Refinement

Dedicated 
Denoising Architecture

NoiseBreaker
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Evaluation Noise Mixtures

Evaluation Images Examples

• Same configuration as Liu et al.

NoiseBreaker
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Evaluation metrics:
PSNR
SSIM Evaluation data:

• BM3D/CBM3D applied with     = 50

• N2V retrained on each mixture

• Results of Liu et al. taken from paper

+ 2dB PSNR, +13% SSIM

+ 4,8dB PSNR, +38% SSIM

BSD68-Grayscale [10]
BSD68-RGB [10]

[10] D. Martin, C. Fowlkes, D. Tal, et J. Malik, « A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics », in Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, Vancouver, BC, Canada, 2001, 
vol. 2, p. 416-423, doi: 10.1109/ICCV.2001.937655.

NoiseBreaker
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Subjective Results Discussion

First denoising step may 
remove the second noise.

A wrong denoiser may be 
applied.

Noisy image may be classified as 
clean when low noise intensity.

NoiseBreaker
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Plan

I . Context

II . Problem Definition
• Digital Image and Noise
• Noise Measure

II . « Expert-Based » Denoising
• Kernel-Based Filtering
• Advanced Filtering

III . « Learning-Based » Denoising
• Deep Learning
• Convolutional Neural Networks
• CNN Architectures for Denoising
• Towards Less Supervision
• Prototyping Process

IV . Eavedropped Image Denoising
• Why is it complicated?
• Existing Solutions

V . Challenges and Perspectives

VI . Practical Work Overview
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Challenges and Perspectives

• Eavesdropped Image Denoising
• Building of large and representative dataset:

• Clean references expensive to obtain

• Two interception campaigns can be very different
• Type of antenna, distance, perturbations (phones, …), raster settings

• Unknown and ‘Unstable’ Noise model
• Video denoising to benefit from time integration

• Deep Learning (DL)
• Requires large datasets and labelisation for supervised learning Fine-Tuning

• Advances on few-shot learning→ Learning from only few examples [Koch15]

• DL is resource-hungry: both computation and memory  → Specific hardware and energy consumption
• New training strategies? On CPU? 

• Fixed-Point Mixed-precision Networks [Micikevicius17]

• Explainability
• XAI: eXplainable Artificial Intelligence [Zhou16]

• Security
• How to test all responses to input? 

• Adversarial Networks
[Micikevicius17] Micikevicius, Paulius, et al. "Mixed precision training." arXiv preprint arXiv:1710.03740 (2017)
[Koch15] Koch, Gregory, Richard Zemel, and Ruslan Salakhutdinov. "Siamese neural networks for one-shot image recognition." ICML deep learning workshop. Vol. 2. 2015.
[Zhou16] Zhou, Bolei, et al. "Learning deep features for discriminative localization." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
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Practical Work Summary

• Supervision: Maxime Pelcat and Florian Lemarchand

• PW1 : Basics of Image Processing and Denoising (1h45)

• PW2 : Toward Eavesdropping Denoising (1h45)


